Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
J Biosci ; 2009 Jun; 34(2): 263-274
Artigo em Inglês | IMSEAR | ID: sea-161298

RESUMO

Using half-sib analysis, we analysed the consequences of extreme rearing temperatures on genetic and phenotypic variations in the morphological and life-history traits of Drosophila ananassae. Paternal half-sib covariance contains a relatively small proportion of the epistatic variance and lacks the dominance variance and variance due to maternal effect, which provides more reliable estimates of additive genetic variance. Experiments were performed on a mass culture population of D. ananassae collected from Kanniyakumari (India). Two extremely stressful temperatures (18°C and 32°C) and one standard temperature (25°C) were used to examine the effect of stressful and non-stressful environments on the morphological and life-history traits in males and females. Mean values of various morphological traits differed signifi cantly among different temperature regimens in both males and females. Rearing at 18°C and 32°C resulted in decreased thorax length, wing-to-thorax (w/t) ratio, sternopleural bristle number, ovariole number, sex comb-tooth number and testis length. Phenotypic variances increased under stressful temperatures in comparison with non-stressful temperatures. Heritability and evolvability based on among-sires (males), among-dams (females), and the sum of the two components (sire + dam) showed higher values at both the stressful temperatures than at the non-stressful temperature. These differences refl ect changes in additive genetic variance. Viability was greater at the high than the low extreme temperature. As viability is an indicator of stress, we can assume that stress was greater at 18°C than at 32°C in D. ananassae. The genetic variations for all the quantitative and life-history traits were higher at low temperature. Variation in sexual traits was more pronounced as compared with other morphometric traits, which shows that sexual traits are more prone to thermal stress. Our results agree with the hypothesis that genetic variation is increased in stressful environments.

3.
Indian J Exp Biol ; 2005 Jul; 43(7): 575-95
Artigo em Inglês | IMSEAR | ID: sea-58059

RESUMO

The analysis of genetics of behaviour within and between species provides important clues about the forces shaping the evolution of behavioural genes. In Drosophila, a number of key processes such as emergence from the pupal case, locomotor activity, feeding, olfaction and aspects of mating behaviour are under circadian regulation. Genes controlling sexual behaviour are likely to control species specific differences in courtship that are involved in reproductive isolation of closely related species. Courtship in Drosophila is characterized by a series of stereotyped behaviours that lead to copulation and more than 30 genes have been identified through mutations that affect one or more of these elements. Although curiosity about behavioural differences between the sexes undoubtedly predates recorded history, little efforts have been made to uncover the molecular basis of male and female courtship. The brain and nervous system functions that underlie sex-specific behaviour are of obvious importance to all animals including humans. To understand behaviour related to sex it is important to distinguish those aspects that are controlled genetically. The isolation and analysis of Drosophila mutants with altered sexual orientation lead to the identification of novel branches in the sex-determination cascade, which govern the sexually dimorphic development of the nervous system.


Assuntos
Animais , Drosophila/genética , Feminino , Genes de Insetos , Inversão Cromossômica , Masculino , Mutação , Polimorfismo Genético , Comportamento Sexual Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA